
Job scheduling @Helpshift
with Jenkins

RootConf, 2018; Bangalore
Vineet Naik
@naiquevin

About this talk

What?

Target Audience

Overview

How we built a distributed job
scheduling platform

Leveraging Jenkins and it’s plugin
ecosystem

To solve the problems with our
earlier job scheduling approach

About this talk

What?

Target Audience

Overview

A general understanding of,

● Batch jobs

● Master-slave architecture

● Domain specific languages

(DSL)

About this talk

What?

Target Audience

Overview

● Our use cases

● Old approach & its problems

● Problem statement

● Why Jenkins?

● New, Jenkins based approach

○ Arch & Implementation

○ Benefits

○ Known issues

○ Future plans

Our use cases

Batch jobs

Semi-automated workflows

Background tasks eg. data crunching
& aggregation, backups, cleanups
etc.

Periodically scheduled eg. every 15
mins, every 4 hours, once a day, once
a week..

Jobs to run semi-automated

workflows on demand

Old approach

Quartzite scheduler

Problems

Disclaimer

Jobs (mainly) written in Clojure

Quartzite, a Clojure wrapper for
Quartz library in Java

Jar is deployed on a node

Long running process

➔ Scheduler initialized at startup

➔ Jobs scheduled in separate
threads

http://clojurequartz.info/
http://www.quartz-scheduler.org/

Old approach

Quartzite scheduler

Problems

Disclaimer

Release requires a restart

Single process running scheduler
and jobs

During release, process is restarted

➔ Interruption of in-progress jobs
➔ Chance of jobs getting skipped

during restart window

Impact: Possibility of SLA breach

Old approach

Quartzite scheduler

Problems

Disclaimer

Overshooting jobs

Job duration > Frequency

Impact: High chance of SLA breach

Job # Start time Duration Comments

#1 10:30 am 20 mins

#2 11:00 am 27 mins

#3 11:30 am 34 mins

#4 12:00 pm - Ƶ Skipped

#5 12:30 pm ...

Old approach

Quartzite scheduler

Problems

Disclaimer

Other problems

● Continuously running processes
● Cannot scale horizontally
● No on-demand job execution
● Lack of visibility

○ Currently running jobs, job history,

upcoming jobs etc.

● Interspersed logs
● Only specific to Clojure/Java

And so on..

Old approach

Quartzite scheduler

Problems

Disclaimer

Quartz(ite) is not the problem; It’s
the approach

It’s a sufficiently advanced scheduler

Can be configured and extended to
solve some of the problems

But, still Jenkins makes a better

platform (more later)

Problem Stmt.

What were we looking for?

Prevent SLA breaches

Distributed execution of jobs;
Horizontal scalability

Job Pipelines

UI for running jobs on-demand

Common functionality provided

Easy to write & onboard jobs

Not just limited to Clojure/Java

Why Jenkins?

Automation Platform

Our prior experience

Our philosophy

● Generic automation platform

● Much more than just CD/CI

● Built-in job scheduler

● Active community

● Matured plugin ecosystem

Why Jenkins?

Automation Platform

Our prior experience

Our philosophy

Already running another Jenkins
cluster for CD/CI

> 500 jobs

~ 20 slaves

~ 4 years

Why Jenkins?

Automation Platform

Our prior experience

Our philosophy

Invest → Reuse → Standardize

Build on top of existing work

Ship faster

New approach

Jenkins

Job wrapper

Code

Job definitions as code

Release Integration
Jenkins cluster running in
master-slave configuration

New approach

Jenkins

Job wrapper

Code

Job definitions as code

Release Integration
Master: stores job definitions,
schedules jobs; provides web UI
Slaves: connect to master; run jobs

New approach

Jenkins

Job wrapper

Code

Job definitions as code

Release Integration

Python script, installed on slaves

Layer between scheduler & the code
written by devs where we can
plug-in common functionality

Provides retries, timeouts,
monitoring

Does all the reusable heavy lifting so
that jobs can focus on business logic

Owned by the OPS team

New approach

Jenkins

Job wrapper

Code

Job definitions as code

Release Integration

Code that encapsulates business
logic to process the task

Can be written in any language

Should run like command line script,
exiting with the correct code

zero for success; non-zero for failure

Owned by developers

New approach

Jenkins

Job wrapper

Code

Job definitions as code

Release Integration

Written using groovy based Pipeline
DSL (more on it later)

Checked into the git repo along with
source code

Owned by developers

New approach

Jenkins

Job wrapper

Code

Job definitions as code

Release Integration

Build: package source code + groovy
scripts into an artifact (tarball)

Pre-deploy: Prepare nodes to join
master as slaves

Deploy: copy the artifact to nodes

Post-deploy: Trigger a special job

called “seed job” on master that
translates DSL scripts into jenkins
jobs

Jenkins Plugins

Pipelines + DSL

Job DSL

Jenkins Swarm Slaves

Metrics

Multi stage jobs

Jobs can run on different slaves,
written in any language by different
teams

https://jenkins.io/doc/book/pipeline/

Jenkins Plugins

Pipelines + DSL

Job DSL

Jenkins Swarm Slaves

Metrics

Groovy based DSL to define jobs

https://jenkins.io/doc/book/pipeline/

Jenkins Plugins

Pipelines + DSL

Job DSL

Jenkins Swarm Slaves

Metrics

Seed jobs

Job that creates other jobs
Groovy based DSL to describe jobs

https://plugins.jenkins.io/job-dsl

Jenkins Plugins

Pipelines + DSL

Job DSL

Jenkins Swarm Slaves

Metrics

Distributedness & Auto-scaling

Slaves initiate connection to master

Master doesn’t need to know about
slaves in advance

Easier to auto-scale

Helps in Jenkins master HA (more

later)

https://plugins.jenkins.io/swarm

Jenkins Plugins

Pipelines + DSL

Job DSL

Jenkins Swarm Slaves

Metrics

Monitoring

Provides Dropwizard metrics API

Contracts for health checks

API consumed by a sensu plugin that
emits alerts

https://plugins.jenkins.io/metrics
http://metrics.dropwizard.io/4.0.0/

Benefits

Releases don’t affect jobs

Overshooting jobs queued

Horizontally scalable

Other

Each job runs in a separate process

No restart needed

Creation/updation of jobs happens
on master and is independent of the
in-progress jobs running on slaves

Impact: No SLA breaches during

releases

Benefits

Releases don’t affect jobs

Overshooting jobs queued

Horizontally scalable

Other

Overshooting jobs are queued on
master until they can be started

Impact: Reduced SLA breaches

Job # Start time Duration Comments

#1 10:30 am 20 mins

#2 11:00 am 27 mins

#3 11:30 am 34 mins

#4 12:04 pm ... ƴ Queued

#5

Benefits

Releases don’t affect jobs

Overshooting jobs queued

Horizontally scalable

Other

Jobs are distributed across slaves

Swarm Slaves make auto-scaling
possible

https://plugins.jenkins.io/swarm

Benefits

Releases don’t affect jobs

Overshooting jobs queued

Horizontally scalable

Other

Web UI to run jobs on-demand

Common functionality provided by
the platform

Easy to write and onboard jobs

Better visibility

Better logs

RESTful API, ACL etc. for free

In Production

Current Status

High availability

Monitoring

Running in production for a few
months

32 Jobs

13 slaves

>15k job runs so far

On average per day running time of
~100 hours

We’ve named this project Igor

In Production

Current Status

High availability

Monitoring
Active/Passive setup

Passive node is hot standby -
continuously syncs files from active
using a tool called unison

In Production

Current Status

High availability

Monitoring
If active goes down, switch-over

Swarm slaves will reconnect to new
(active) master by re-resolving DNS

In Production

Current Status

High availability

Monitoring

Jobs: Wrapper script sends alerts
based on exit code and metrics such
as job duration

Master: Process checks + health
checks exposed by metrics plugin

Slaves: Process and health checks
for swarm client process

Known issues HA for master is not real HA

At present active/passive
switch-over is manual

Auto-scaling not implemented yet

Limited to use cases where the
load is predictable

Future plans Better HA with automated
switch-over

Auto-scaling of swarm slaves

State passing between pipeline
stages

(May be) Rewrite the python
wrapper script in Java and package it
as a Jenkins plugin

Thank You!

@naiquevin

https://naiquevin.github.io

https://www.helpshift.com

https://engineering.helpshift.com

Questions?

https://github.com/naiquevin
https://naiquevin.github.io
https://www.helpshift.com/
https://engineering.helpshift.com/

