
Rust & Wasm
To build a browser based metronome

Vineet Naik
Rust Bangalore meetup

20 July 2024

About me

● Using Rust for about 8-9 months
● Mostly a backend dev

○ Have done full stack dev prior to 2014
● No experience with audio programming
● Hobbyist guitar player

Outline

● What is Webassembly?
● Rust + Webassemby

○ Crates and tools for compiling rust to wasm
○ How to get rust code working inside the browser?

● What is a Metronome?
○ Demo

● Brief intro to WebAudio API
● Code examples

○ Debugging rust code at runtime
○ Error handling
○ Function callbacks and closures

Webassembly

What is Webassembly?

● Compact binary instruction
format

● Not to be written by hand
○ Compilation target for Rust, C, C++

● Runs in modern web browsers
○ Designed to interop with Javascript

both ways
○ But doesn’t make any web specific

assumptions
● Abbrev: Wasm in short

Advantages

● Near-native performance
○ Intermediate representation that’s closer to machine code than JS source code
○ No garbage collection

● Compact binary format that’s faster to transmit over network
○ Faster than even compressed JS
○ Tools available to further shrink the wasm binaries

● Can be used with existing JS code bases
○ No need to choose between Wasm and JS

Rust → Wasm → Browser

Two strategies

1. Build entire app in Rust
a. Yew framework

2. Wasm + JS
a. Build part of the app in Rust and integrate it into existing JS frontend

Tools

wasm-pack

● Tool to compile Rust → Wasm
● Meant for interop with Javascript

○ Either browser (web) or nodejs

 $ cargo install wasm-pack

wasm-bindgen

● A crate that wasm-pack depends on
● To provide a bridge between JS types and

Rust types
● Comprises of multiple crates:

○ js_sys
■ bindings for std js objects only

○ web_sys
■ bindings for all the Web APIs that

the browsers provide.
■ It’s optional – all APIs are gated by

cargo features
○

How it works?

$ wasm-pack build --target web

Building a browser based metronome

Metronome

● Device that gives an audible click
or beep at a set rate

● Used by musicians during practice
● Speed is measured in Beats Per

Minute or BPM (also known as
tempo)

○ 60 bpm = 1 beat per sec
○ 240 bpm = 4 beats per sec
○ 150 bpm = 2.5 beats per sec

Demo
https://naiquevin.github.io/rustick/

https://naiquevin.github.io/rustick/

WebAudio API

● Browser API for controlling audio
● AudioContext

○ currentTime
● AudioNode

○ Source nodes
○ Effect nodes
○ Destination nodes

● AudioParam

Code structure

WebAudio code in Rust

What if rust code panics?

● Panic converted to
RuntimeError exception

● The stacktrace does point to text
representation of wasm

● But symbols such as $func86
are hardly of any help

Aside: Wasm text representation is a Lisp!

Build with --debug flag

$ wasm-pack build --debug --target web

External crate: console_error_panic_hook

● Include the crate as a dependency
● Add following line in some code path that’s

guaranteed to execute e.g.
Metronome::new function

console_error_panic_hook::set_once()
;

https://github.com/rustwasm/console_error_panic_hook

https://github.com/rustwasm/console_error_panic_hook

Using console.log during development

Or using helpers provided by the web-sys crate

● Web_sys::console::log // array of values
● Web_sys::console::log_1 // single value
● Web_sys::console::log_2 // two values

Error handling

JsValue: Rust representation of an object owned by Javascript

Callback functions / Closures

References

Rustic metronome

● Code: https://github.com/naiquevin/rustick
● Demo: https://naiquevin.github.io/rustick/

Webassembly

● https://webassembly.org/

Rust + Wasm

● https://rustwasm.github.io/docs/book/
● https://rustwasm.github.io/wasm-bindgen/introduction.html
● https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_Wasm

Metronome & WebAudio API

● https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
● https://grantjam.es/creating-a-simple-metronome-using-javascript-and-the-web-audio-api/

https://github.com/naiquevin/rustick
https://naiquevin.github.io/rustick/
https://webassembly.org/
https://rustwasm.github.io/docs/book/
https://rustwasm.github.io/wasm-bindgen/introduction.html
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_Wasm
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://grantjam.es/creating-a-simple-metronome-using-javascript-and-the-web-audio-api/

Thank you!

