Writing elegant command line scripts in Python

Writing elegant command line scripts in Python

Vineet Naik

Mumpy meet, July 21, 2013

Writing elegant command line scripts in Python

About me

Developer at Kodeplay

We use Python/Django and a bunch of other technologies to build
and run KodeCRM - A Customer Service solution for online
businesses.

Writing command line scripts was my “gateway drug” to Python!

Onaiquevin

Writing elegant command line scripts in Python

About you

e Have basic knowledge of Python

e Have some command line experience (preferably Linux)

Writing elegant command line scripts in Python

Overview of the talk

@ Why use Python for command line interfaces (CLlIs)
@® Building elegant and extensible commands

©® Command parsers in Python

O Best practices; DOs and DONTs

@ Some other handy libs/utilities

® Providing scripts from python packages

Writing elegant command line scripts in Python

‘—Why use Python for CLI?

Section 1

Why use Python for CLI?

Writing elegant command line scripts in Python

‘—Why use Python for CLI?

Why write command line scripts?

To automate tasks that are tedious or/and need to be
repeated.

To automate tasks that are impractical to do manually

Can be run on remote boxes with no Desktop environments.

After a point, GUIs get frustrating to work with particularly if
you are a developer.

Writing elegant command line scripts in Python

‘—Why use Python for CLI?

Why use python for CLI?

Easier to read, write and maintain

Provides access to a lot of useful libraries (eg. requests,
BeautifulSoup, command parsers)

e Easier to write tests and document

e Works across platforms (mostly)

Makes Python programmers feel at home

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

Section 2

Building elegant and extensible commands

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

Elegant CLI

Intuitive and consistent to use

End users’ familiarity with the language (here Python) should
be a non-requirement

Well documented for the both end users and developers

Work well with other commands and tools
Safe

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

The Unix philosophy

Write simple parts connected by clean interfaces.

Complex front ends should be cleanly separated from complex
back ends.

Always do the least surprising thing

When you must fail, fail noisily and as soon as possible

Value developer time over machine time

e Design for future because it will be here sooner than you think

Read “The Art of Unix Programming” by Eric Raymond. Too much wisdom to
fit in here

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

Anatomy of a command

e $ls

Command, Options, Positional Arguments, Sub-command, Not a part of command

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

Anatomy of a command

e $ls

e $ls-a

Command, Options, Positional Arguments, Sub-command, Not a part of command

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

Anatomy of a command

e$ls
e $ls-a
e $Is./Downloads

Command, Options, Positional Arguments, Sub-command, Not a part of command

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

Anatomy of a command

$1Is

$1s-a

$ Is ./Downloads

$ Is ./Downloads -lah

Command, Options, Positional Arguments, Sub-command, Not a part of command

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

Anatomy of a command

$1Is

$1s-a

$ Is ./Downloads

$ Is ./Downloads -lah

e $ git commit -m " Fix README"

Command, Options, Positional Arguments, Sub-command, Not a part of command

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

Anatomy of a command

$1Is

$1s-a

$ Is ./Downloads

$ Is ./Downloads -lah

e $ git commit -m " Fix README"
$ git log --author=vineet

Command, Options, Positional Arguments, Sub-command, Not a part of command

Writing elegant command line scripts in Python

‘—Building elegant and extensible commands

Anatomy of a command

$1Is

$1s-a

$ Is ./Downloads

$ Is ./Downloads -lah

e $ git commit -m " Fix README"
$ git log --author=vineet

"o

$ cat /etc/passwd | cut -d ":" -f 1 > usernames.txt

Command, Options, Positional Arguments, Sub-command, Not a part of command

Writing elegant command line scripts in Python

‘—Command Parsers in Python

Section 3

Command Parsers in Python

Writing elegant command line scripts in Python

‘—Command Parsers in Python

Command Parsers in Python

e sys.argv¥*
e optparse

e argparse

docopt

But there are a few others which | haven't tried (eg. getopt, clint)

* sys.argv is not a parser but the basic mechanism in Python to collect
command line args

Writing elegant command line scripts in Python

‘—Command Parsers in Python
sys.argv

sys.argv

Most basic and easy to get started with

Only collects tokens
We need to handle different combinations of args and options

Leads to ugly code (nested try..except and if..else blocks)

Writing elegant command line scripts in Python

‘—Command Parsers in Python
sys.argv

Example

import sys

script = sys.argv[0]
args = sys.argv[1:]
print(script)

print (args)

exit (0)

$ python manage.py startapp poll
manage .py
[’startapp’, ’poll’]

Writing elegant command line scripts in Python

‘—Command Parsers in Python

optparse

optparse

e Stdlib module for parsing options

e No support for advanced functionality eg. subcommands,
grouped commands etc.

o Generates help message/summary

Warning! Deprecated since version 2.7

Writing elegant command line scripts in Python

‘—Command Parsers in Python
optparse

Examples

from optparse import OptionParser

p = OptionParser()

p.-add_option(’-p’, ’--port’, dest=’port’, default=9000,
help="Port to use for localhost (0.0.0.0)’)

(options, args) = p.parse_args()

print (options.port) # access as attributes

Warning! Deprecated since version 2.7

Writing elegant command line scripts in Python

‘—Command Parsers in Python

argparse

argparse

Stdlib module. Replaces optparse in newer versions of Python

Generates help message/summary

Very powerful. Supports advanced configurations

Verbose code and complex API

"The D3.js of command parsers!”

Warning! New in version 2.7

Writing elegant command line scripts in Python

‘—Command Parsers in Python
argparse

Examples

import argparse

p = argparse.ArgumentParser()
p.add_argument (’date’,
help="Wild card pattern for date eg. 06/Nov/*, */Nov/x’)
.add_argument (’-f’, ’--filepath’, help=’path to the log file’)
.add_argument (’-i’, ’--stdin’,
help=’Use standard input’, action=’store_true’)
p.add_argument(’-t’, ’--log-type’,
help=(
’Regex pattern or name of a ’
’predefined log pattern format for parsing logs’
), default=’apache2_access’,
choices=LOG_PATTERN_FORMATS.keys())

o lise]

args = p.parse_args()
print(args.date) # access as attributes

Writing elegant command line scripts in Python

Command Parsers in Python

argparse

argpase help message

toolbox git:(X python splitlogs.py -h
[-f FILEPATH] [-i]
apache2_error,apache2_.

splitlogs.py

[positional arguments:
dat Wild card or C e /Nov/*, */Nov/*

loptional arguments:
-h, --help show this help message and exit
-f FILEPATH, --filepath FILEPATH
path to the log file
-i, --stdin Use standard input
-t {ap g-type {a rror,apactk ac
name of a edefined log pattern
rmat for parsing logs
toolbox git: () X I

Writing elegant command line scripts in Python

‘—Command Parsers in Python
d

locopt

docopt

e Not in Stdlib

e Uses a well formed help message (from docstring) to parse the
command

e Lightweight and minimal
e Generates a dictionary of args and options
e Doesn't handle types. All collected args/opts are strings

e Sometimes fails with hard to debug error messages

Writing elegant command line scripts in Python

‘—Command Parsers in Python
d

ocopt

Example

"4 simple CSV to JSON converter

Usage: csv2json.py (—-i | FILE) [-q QUOTECHAR -d DELIMITER]
csv2json.py ~h | —-help | —--version

Options:
-1 Read from stdin
-d DELIMITER Specify csv delimiter [default: ,]
-q QUOTECHAR Specify csv quotechar [default: []
-h --help Show help
--version Show wversion

nwun

from docopt import docopt

args = docopt(__doc__, version=’1.0")

Writing elegant command line scripts in Python

‘—Command Parsers in Python

Which one to use?

e sys.argy if it's too simple (no options etc.)
e Choose between argparse and docopt as per complexity of the
command and style preference

e Donot use optparse as far as possible since it's deprecated
e What | use:

sys.argv — docopt — argparse

Writing elegant command line scripts in Python

‘—Best Practices; DOs and DONTs

Section 4

Best Practices; DOs and DONTs

Writing elegant command line scripts in Python
‘—Best Practices; DOs and DONTs
Separation of concerns and Reusability

Separation of concerns and Reusability

o Keep command parsing logic separate from the
implementation of the command

e Define helper functions

e Pass in arguments to functions instead of having global
variables

e Have the functions "return” things rather than "doing” things

e Treat scripts as modules with import-able code

Writing elegant command line scripts in Python
‘—Best Practices; DOs and DONTs
Separation of concerns and Reusability

Example script template

"4 seript to

Usage:

mwun

imports

constants

functions

tests

if __name__ == ’__main__’:

command parsing logic and calls to functions
pass

Writing elegant command line scripts in Python
‘—Best Practices; DOs and DONTs
Document code and write tests

Document code and write tests

e Documentation helps when you have to fix something or
extend the script three weeks after writing it

e Same with tests. Simple assert statements in the same file are
sufficient.
e nose makes it convenient to run tests
% myscript.py
def test_something():
assert 2 + 2 ==
% Running all the test* functions in myscript.py from terminal

$ nosetests -v myscript.py

Writing elegant command line scripts in Python
‘—Best Practices; DOs and DONTs
Write composable scripts

Write composable scripts

$ cat /etc/passwd | cut -d : -f 1 > users.txt

$ cat ./access.log.gz \
| gunzip \
| python splitlogs.py "18/Jul/*" -i \
| python log2json.py -i \
| python logan.py -i -p ./.config/dynurls.json \
> ./18-07-analysis.txt

Such composable scripts play well with other commands so that
complex commands can be composed using smaller ones that do
one thing well.

Writing elegant command line scripts in Python
‘—Best Practices; DOs and DONTs
Write composable scripts

Reading from either file or stdin

import os
import sys
from contextlib import contextmanager

Q@contextmanager
def read_input(filepath, stdin):
if filepath is not None:
f = open(os.path.abspath(filepath))
yield f
f.close()
elif stdin:
yield sys.stdin
else:
raise Exception(’Either filepath or stdin required’)

calling code
with read_input(args.filepath, args.stdin) as f:
do_something(f)

Writing elegant command line scripts in Python

‘—Best Practices; DOs and DONTs
Wi

rite composable scripts

Keep debug messages separate from stdout

Writing debug messages to stderr is a better alternative as even if
stdout is redirected, debug messages will still be printed on the
screen.

print ’I am here’ # bad, will pollute stdout

print >> sys.stderr, ’I am here’ # python 2.z
print(°I am here’, file=sys.stderr) # python 3.z
sys.stderr.write(’I am here’)

Writing elegant command line scripts in Python
‘—Best Practices; DOs and DONTs
Return correct exit codes

Return correct exit codes

This means your program communicates well with other programs

try:

do_something()

exit(0) # 0 means successful exit
except Exception:

exit(1l) # non-zero means abnormal ezit

eg. Fabric stops if any of the command that it runs returns 1 exit
code such as when tests fail

Writing elegant command line scripts in Python

‘—Best Practices; DOs and DONTs
A

void writing redundant code

Avoid writing redundant code

eg. Having your script save output to a file is redundant,

if args.outfile is not None:
with open(args.outfile, ’w’) as f:
json.dump(data, f)
else:
sys.stdout.write(json.dumps(data))

$ python myscript.py --outfile=output.json

Redirect output to file instead,
sys.stdout.write(json.dumps(data))

$ python myscript.py > output.json

Often, this also results in lesser options

Writing elegant command line scripts in Python

‘—Best Practices; DOs and DONTs
E

nsure safety

Ensure safety

Take care to avoid doing stupid things on behalf of the user

e Warn users and ask for confirmation. “Danger zone.
Proceed? [Y/N]“

e Beware of “shell injection” when invoking system calls using
user input

from subprocess import call
call(’1ls -1’ + > ’> + args.dirpath, shell=True) # unsafe

$ python myscript --dirpath="nothing; rm -rf /" # oops!

call([’1ls’, ’-1’] + [args.dirpath]) # much safer

Writing elegant command line scripts in Python

‘—Best Practices; DOs and DONTs
No sensitive data in code

No sensitive data in code

Having sensitive data such as a password hard-coded in code is not
just unsafe but it isn't a constant in the first place.

HOST = ’123.456.789.01°

PASSWORD = ’is-a-top-secret’ # 0 RLY!!

Use the getpass module
from getpass import getpass
password = getpass()

getpass prompts user for password while printing nothing in the
terminal

print (’Your password is safe with us’)

Writing elegant command line scripts in Python

‘—Best Practices; DOs and DONTs
Fi

ilepaths are more than just strings

Filepaths are more than just strings

LOG_DIR = ’/var/log’

...

string concatenation 7s bad and unreliable
logfile_path = LOG_DIR + ’/’ + ’error.log’

good
import os
logfile_path = os.path.join(LOG_DIR, ’error.log’)

Writing elegant command line scripts in Python

‘—Other useful utils

Section 5

Other useful utils

Writing elegant command line scripts in Python

Other useful utils
B

eautiful printing in terminal

Beautiful printing in terminal

Clint provides colored output and indentation.

from clint.textui import colored, indent, puts

print(’Traffic lights’)

with indent(8):
puts(colored.green(’Go!’))
puts(colored.yellow(’Wait!’))
puts(colored.red(’Stop!’))

1i) sandbox

Other alternatives: curses, blessings, colorama

Writing elegant command line scripts in Python

Other useful utils
P

rogress bar

Progress bar

Clint also provides progress bars

from clint.textui import progress
import time

data = range(20)

progb = progress.bar(data)

for d in data:
time.sleep(0.1)
progb.next ()

Writing elegant command line scripts in Python

‘—Providing commands from packages

Section 6

Providing commands from packages

Writing elegant command line scripts in Python

‘—Providing commands from packages

Providing scripts from packages

What does that mean?

$ pip install Django

$ django-admin.py --version

django-admin.py is a command which is made available to us after
we install Django

Writing elegant command line scripts in Python

‘—Providing commands from packages
Vi

arious ways to provide scripts from an installed package

Allowing a module to be run as a script

$ python -m json.tool
$ python -m SimpleHTTPServer 9000

def main(args):
do something here

if __name__ == ’__main__’:
get args using some method
main(args)

Writing elegant command line scripts in Python

‘—Providing commands from packages
Vi

arious ways to provide scripts from an installed package

Using distutils

% Django/setup.py

setup(
name = "Django",
...
scripts = [’django/bin/django-admin.py’],
...
)

$ django-admin.py startproject

Writing elegant command line scripts in Python

‘—Providing commands from packages
Vi

arious ways to provide scripts from an installed package

Using Setuptools/Distribute

% myutil /setup.py

setup(
name=’MyUtil’,
...
entry_points={
’console_scripts’: [
’myutil = myutil.commands:main’

]

A file “myutil* will be created in the bin directory of the environment with 755
permissions

Writing elegant command line scripts in Python

‘—Providing commands from packages
Vi

arious ways to provide scripts from an installed package

Which one to use?

There are various ways to do this because there are various ways to
package a library in Python ie. using distutils (stdlib),
setuptools/distribute

Comparing these is a topic of another talk!

Writing elegant command line scripts in Python

Summary

e Treat command line scripts as any other application or
program

e Document code, write tests

e Embrace the Unix Philosophy

e Give importance to safety

e Stick to best practices as far as possible

e But sometimes there may be a good reason not to..

"Every rule can be broken but none may be ignored” *

* Central rule of typography

Writing elegant command line scripts in Python

Thank You!

Questions?

Writing elegant command line scripts in Python

References

The Art of Unix Programming - http://catb.org/esr/writings/taoup/
optparse - http://docs.python.org/2/library /optparse.html

argparse - http://docs.python.org/dev/library/argparse.html

docopt - https://github.com/docopt/docopt

getpass - http://docs.python.org/2/library/getpass.html

clint - https://github.com/kennethreitz/clint

Some examples are taken from these scripts -
https://github.com/naiquevin /toolbox

	Why use Python for CLI?
	Building elegant and extensible commands
	Command Parsers in Python
	sys.argv
	optparse
	argparse
	docopt

	Best Practices; DOs and DONTs
	Separation of concerns and Reusability
	Document code and write tests
	Write composable scripts
	Return correct exit codes
	Avoid writing redundant code
	Ensure safety
	No sensitive data in code
	Filepaths are more than just strings

	Other useful utils
	Beautiful printing in terminal
	Progress bar

	Providing commands from packages
	Various ways to provide scripts from an installed package

