
Enums
Rust’s killer feature

Vineet Naik
Rust Bangalore, 9th March 2024

About me

● Rust novice
○ ~5 months experience writing rust
○ Limited to personal projects

● High level / dynamically typed / functional languages
○ Clojure, Python, Java, Erlang, Javascript

Outline

● Part 1: Introduction to Enums in Rust
● Part 2: Practical examples

○ From dupenukem, a personal project for file deduplication
○ Comparison with equivalent code in other languages

● Won’t cover
○ Low level details e.g. memory allocations and related optimizations, performance etc.

Part 1: Rust enum type

What are enums?

Types with a finite set of variants

Example: red, green, yellow
colours in traffic lights

Sum type

A traffic light can be any of the
three colours but at a time it can only
be one colour

Pattern matching

● match construct for value
comparison

Pattern matching

● match construct for value
comparison

● Matches are exhaustive
○ All possibilities need to be covered

for the code to compile

Enums in Python and Java

Naive use of enums

● As a “kind” field inside a struct
● And other fields representing

actual data

Not much different from enums in
Java and Python

More than just a type to represent a “kind of” field

● Optionally “data-bearing”1

● Each variant can be attached data
● Data could be string, number,

multiple values (tuple), struct
● Names of the variants becomes

constructors
● Methods can be implemented

[1] The term “data-bearing” borrowed from Rust after the honeymoon by Bryan Cantrill

https://bcantrill.dtrace.org/2020/10/11/rust-after-the-honeymoon/

Enums in the rust stdlib

● Option
● Result
● Cow (clone-on-write)
● etc?

Part 2: Practical examples

Criteria for evaluating the solutions

● Flexibility/Extensibility
○ How easy is it to adapt to changing requirements

● Robustness
○ How easy is it to make changes without regression

● Conciseness
○ How easy is it to avoid unnecessary complexity and verbosity

Non-criteria for this talk

● Performance
● Memory efficiency

Dupenukem - A file deduplication utility

Use case 1: Generate/Parse custom file format

Use case 1: Generate/Parse custom file format

● File = ordered collection of lines
○ Vec<Line>

● Our custom file format has different kinds of lines
● But, a vector is a homogenous collection in rust
● One workaround is to use traits

○ Vec<Box<dyn Line>>> where Line is a trait
○ Over engineered for such a fixed use case

● Enums to the rescue!

Use case 1: Rust

Use case 1: Rust
Flexibility/Extensibility

Robustness

Conciseness

Use case 1: Rust
Flexibility/Extensibility ✅

Robustness

Conciseness

Use case 1: Rust
Flexibility/Extensibility ✅

Robustness ✅

Conciseness

Use case 1: Rust
Flexibility/Extensibility ✅

Robustness ✅

Conciseness ✅

Equivalent code in other languages

Use case 1: Java

Use case 1: Java
Flexibility/Extensibility ✅

Robustness ✅

Conciseness ❌

Use case 1: Python

● Dynamically typed
● Heterogeneous

collections
● Exceptions may happen

at run time

Use case 1: Python
Flexibility/Extensibility ✅

Robustness ❌

Conciseness ✅

● Can we make it robust by
using classes?
○ No
○ Can’t enforce

homogeneous
collections

○ Runtime exceptions
● Typed python?

○ May be but not sure
○ Only at the cost of

conciseness

Use case 1: Clojure

● Dynamically typed
● Heterogeneous

collections

Use case 1: Clojure
Flexibility/Extensibility ✅

Robustness ❌

Conciseness ✅

● Can we make it robust by
using records and
protocols?
○ No
○ Can’t enforce

homogeneous
collections

○ Runtime exceptions

Summary

Rust Java Python Clojure

Extensibility/Flexibility ✅ ✅ ✅ ✅

Robustness ✅ ✅ ❌ ❌

Conciseness ✅ ❌ ✅ ✅

Use case 2: Different types of actions

Use case 2: Java

● Interfaces and classes that implement
them

● The predicate fn for filtering is spread
across multiple classes

Use case 3: Error handling

Multiple error types can be
wrapped inside a single
enum

Use case 3: Error handling

Limitations of the enum type

● Extra memory allocation
● All variants need to be known (statically defined)
● ?What else?

Why I think enum is rust’s killer feature?

● Rust code satisfies all the three criteria
● Trade offs

○ Dynamic languages => concise => quick prototyping
■ can result in brittle code

○ Static languages => compiler checks => high confidence
■ can get verbose

● Rust enums: quick prototyping with high confidence
● Enum-based solution seems like the Goldilocks1 approach

○ It feels “just right”

[1]: Goldilocks Principle

https://en.wikipedia.org/wiki/Goldilocks_principle

Thank you

